A Note on Type I Blow up Formation for the Critical Nlw

نویسندگان

  • JOACHIM KRIEGER
  • WILLIE WONG
چکیده

We prove development of type I singularities for a suitable concept of weak evolution in the context of the quintic focussing NLW on R3`1, for data near and “above” the ground state static solution.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Type I Blow up Formation for the Critical Nlw

We introduce a suitable concept of weak evolution in the context of the radial quintic focussing semilinear wave equation on R3`1, that is adapted to continuation past type II singularities. We show that the weak extension leads to type I singularity formation for initial data corresponding to: (i) the Kenig-Merle blow-up solutions with initial energy below the ground state and (ii) the Krieger...

متن کامل

A note on critical point and blow-up rates for singular and degenerate parabolic equations

In this paper, we consider singular and degenerate parabolic equations$$u_t =(x^alpha u_x)_x +u^m (x_0,t)v^{n} (x_0,t),quadv_t =(x^beta v_x)_x +u^q (x_0,t)v^{p} (x_0,t),$$ in $(0,a)times (0,T)$, subject to nullDirichlet boundary conditions, where $m,n, p,qge 0$, $alpha, betain [0,2)$ and $x_0in (0,a)$. The optimal classification of non-simultaneous and simultaneous blow-up solutions is determin...

متن کامل

A note on blow-up in parabolic equations with local and localized sources

‎This note deals with the systems of parabolic equations with local and localized sources involving $n$ components‎. ‎We obtained the exponent regions‎, ‎where $kin {1,2,cdots,n}$ components may blow up simultaneously while the other $(n-k)$ ones still remain bounded under suitable initial data‎. ‎It is proved that different initial data can lead to different blow-up phenomena even in the same ...

متن کامل

Finite time blow up of solutions of the Kirchhoff-type equation with variable exponents

In this work, we investigate the following Kirchhoff-type equation with variable exponent nonlinearities u_{tt}-M(‖∇u‖²)△u+|u_{t}|^{p(x)-2}u_{t}=|u|^{q(x)-2}u. We proved the blow up of solutions in finite time by using modified energy functional method.

متن کامل

A note on necessary conditions for blow-up of energy solutions to the Navier-Stokes equations

In the present note, we address the question about behavior of L3-norm of the velocity field as time t approaches blow-up time T . It is known that the upper limit of the above norm must be equal to infinity. We show that, for blow-ups of type I, the lower limit of L3-norm equals to infinity as well. 1991 Mathematical subject classification (Amer. Math. Soc.): 35K, 76D.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013